US 2008/0059876 Al

[0026] Transposition (t) hash: OCAT, CAOT, COTA
[0027] Deletion (d) hash: OAT, CAT, COT, COA
[0028] Transposition-replacement (tr) hash: *CAT, O*AT,

OC*T, OCA*, *AOT, C*OT, CA*T, CAO*, *OTA, C*TA,
CO*A, COT*

[0029] Special deletion-transposition hash: ACT, CTO
[0030] Double deletion hash: CO, CA, CT, OA, OT, AT
[0031] Deletion-replacement hash: *AT, O*T, OA*, C*T,

CA*, *OT, CO*, *OA, C*A

[0032] Insertion-replacement hash: **OAT, *C*AT,
*CO*T, *COA¥*, C**AT, C*O*T, C*OA*, *O*AT, CO**T,
CO*A* *OA*T, C*A*T, COA**, *OAT*, C*AT*, CO*T*

[0033] These hash tables require, in total O(D*W?) stor-
age.
[0034] Referring again to FIG. 3, with the above hash

tables pre-created, a test is performed for a distance one
misspelling (as discussed above in conjunction with FIG. 1).
As noted earlier, this takes O(W) time and requires storage
that is O(D)=O(D*W). If the distance one misspelling
routine indicates that the candidate word is spelled correctly,
the algorithm terminates, also indicating a correct spelling
(Step 320). Otherwise, it checks to see if enough suggested
corrections have been accrued in testing for a distance one
correction (Step 330). If enough have been detected it
outputs the suggested corrections and terminates (Step 340),
otherwise it goes through the process of testing distance two
variants of the candidate word against the distance two hash
tables (Step 400), and only then outputs suggested correc-
tions and terminates (Step 340).

[0035] FIG. 4 is a flow chart illustrating the process 400 of
testing variants of the candidate word against hash tables
derived from the dictionary for distance two misspellings. If
a transposition is denoted by t, a deletion by d, an insertion
by i, and a replacement by r; the following misspellings are
possible: tt, td, ti, tr, dt, dd, di, dr, it, id, ii, ir, rt, rd, ri, rr.

[0036] The following table lists the misspelling type, the
action, and the hash table checked for each of the 16 possible
distance two misspellings. Note that the possible outcomes
of'two successive misspellings Xy, where x,y are elements of
{t,d,i,r} are the same as the successive misspellings of yx,
except in the single case where td # dt, since for example, on
the one hand, starting with the word COAT one can reach
CTO via a transposition followed by a deletion, but not via
a deletion followed by a transposition, and on the other hand,
starting from COAT one can reach OAT via a transposition
followed by a deletion but not vice versa. Note that there is
also an asymmetry in it and ti, where, for example (again
from the word COAT) the CO*AT variant is not obtainable
from ti and the ti variant CA*OT is not obtainable from it.
However, the first of these variants is caught in a distance
one simple insertion check, so can be disregarded, and the
second variant is caught just like all other it or ti variants by
the d Test Action against the t hash table. Only in the two
cases, of td and dt are two separate actions followed by hash
table checks required. The dt hash is a special hash since it
does not need to store all deletions followed by transposi-
tions, since most of these will be caught by the t test action
against the d hash table. The exceptional cases are those
where one first deletes a character and then transposes the
characters that were originally around the deleted character.
Only these O(W) deletion-transpositions need to be stored in
the dt hash table.

Mar. 6, 2008

TABLE 1
Misspelling Type Test Action Hash table checked
t t
td t d
(none) d
ti d t
tr T tr
dt t d
(none) dt
dd (none) dd
di d d
dr T dr
it d t
id d d
il dd dictionary
ir T ir
1t T tr
rd T dr
i T ir
fus dd dd
[0037] Returning to FIG. 4, after starting (Step 405) and

obtaining the candidate word, one tests the candidate word
against the deletion, deletion-transposition and double dele-
tion hash tables, and accumulates matches in Step 410, as
verified by checking Table 1. Next, one generates all single
move transpositions of the candidate word in Step 415 and
tests these variants against the transposition and deletion
hashes in Step 420. Next, in Step 425 one generates all
single character deletion variants and in Step 430 tests these
against the transposition and deletion hashes. Note that just
the various test actions that go against the same hash tables
in Table 1 are accumulated and being executed in a single
step, for the sake of brevity of explanation. Next, in Step 435
one generates all single character replacement variants of the
candidate word and in Step 440 tests against the translation-
replacement, deletion-replacement, and insertion-replace-
ment hash tables. Finally, in Step 445 all double deletions of
the candidate word are generated and in Step 450 these are
tested against the double deletion hash. Having accumulated
all hash table matches, the results are output in Step 455.
[0038] Itis noted that except for distance two misspellings
that involve double insertions, double deletions, or replace-
ments, all actions can be done in O(W) time with O(D*W)
=0(D) storage. However, replacements are less usual than
the other single operations, and may be considered to be a
deletion followed by an insertion. Also, double insertions
and double deletions are relatively rare types of misspell-
ings. Hence, if distance two misspellings are re-defined to
exclude these possibilities (i.e., don’t test these cases), a
correction algorithm is provided that runs in O(W) time with
O(D*W)=0O(D) storage. This is referred to as a “soft”
distance two correction.

[0039] FIG. 5 is a flow chart illustrating the overall flow
of'the “soft” distance two spelling correction algorithm 500.
The diagram of FIG. 5 is identical to FIG. 3, the complete
distance two correction flow, except that in lieu of testing all
distance two variants against the relevant distance two hash
tables, only distance two variants are tested that do not
include a replacement, and do not include double deletion
and double replacement. As usual, relevant hash tables are
assumed to be pre-created. Distance one correction is ini-
tially performed (Step 100). If no misspelling is detected, the
process 500 outputs that the word is spelled correctly and
terminates (Step 520). Otherwise, a test is performed to see

